ASCERTAINING THE EFFECTS OF HEAVY METAL IN WASTE WATER ON VARIOUS PARAMETERS BLACK GRAM (PHASEOLUS MUNGO VAR. T-9): A POT EXPERIMENT

Jaishree and T.I.Khan*

Abstract

This paper contains the result of a pot experiment using Phaseolus mungo as a test species and waste water in different proportion. Study recorded the effects of textile waste water on standard growth parameter and physiological parameters. The edible plant part (pods/pulse) contained Zinc, Copper, Nickel, Cadmium, Chromium, Lead and Cobalt concentration was 5.223mg/gm, 2.496 mg/gm, 1.229 mg/gm, 1.746mg/gm, 4.853 mg/gm, 1.874 mg/gm and 1.802mg/gm respectively.

Key words: *Phaseolus mungo*, Pot experiment and Heavy metals.

^{*} Indira Gandhi centre for Human Ecology, Environmental and Population Studies Centre University of Rajasthan, Jaipur -302004

ISSN: 2320-0294

Introdution

Heavy metal contamination of vegetables cannot be underestimated as these foodstuffs are important components of human diet. Vegetables are rich sources of vitamins, minerals, and fibers, and also have beneficial antioxidative effects(Ali and Al-Qahtani 2012). However, intake of heavy metal-contaminated vegetables may pose a risk to the human health. Heavy metal contamination of the food items is one of the most important aspects of food quality assurance (Marshall, 2004; Radwan and Salama, 2006; Khan et al., 2008). Rapid and unorganized urban and industrial developments have contributed to the elevated levels of heavy metals in the urban environment of developing countries such as Egypt (Radwan and Salama, 2006), Iran (Maleki and Zarasyand, 2008), China (Wong et al., 2003) and India (Marshall, 2004; Sharma et al., 2008a,b). Recently, Sharma et al. (2008a,b) have reported that atmospheric deposition can significantly elevate the levels of heavy metals contamination in vegetables. In this paper results are given related to a pot experiment. In the outskirts of Jaipur, Specially in Sanganer, the waste water discharged from the small, medium and even large scale tie and Dye industries is used in agricultural fields. This waste water is used untreated. Hence the authors have collected this discharged effluent water and mixed with distilled water in different proportions and conducted a pot experiment. The objectives of conducting this experiment was to ascertain and estimate heavy metals in the vegetable *Phaseolus mungo* T-9 (black gram).

Materials and Methods

Experimental setup: For conducting a pot experimental study *Phaseolus mungo* Var. T-9 was selected as test plant. *Phaseolus* mango(black gram) belongs to family *Fabaceae*. It is a commonly used green pods as a vegetable and seeds as a pulses. The plants were grown in the earthen pots and the population of five plants per pot was maintained for experiment. Waste water was collected from Sanganer, Jaipur where large number of textile industries are located. These industries discharge huge quantity of untreated waste water in a dry river popularly known as Amanishah nala the erstwhile Drawyawati River. In this experiment six levels maintained containing different proportion of textile waste water and distilled water as follows:-

Level 1 - Controlled condition (Pure Double Distilled water)-(Control)

Level 2 - DW:WW:: 90:10

September 2015

Volume 4, Issue 3

ISSN: 2320-0294

Level 3 - DW:WW:: 80:20

Level 4 - DW:WW:: 70:30

Level 5 - DW:WW:: 60:40

Level 6 - DW:WW:: 50:50

Growth parameters: The plants were harvested at pre-flowering, peak-flowering and post-flowering stages for studying different growth parameters (root and shoot length, dry weight of root and shoot). For dry weight determination roots and shoots were separated and dried in hot air oven at 80°C for 72 hr before determining biomass in gms.

Biochemical analysis: Chlorophyll a, b and total chlorophyll content in leaves were estimated by employing method suggested by Arnon (1949). Carbohydrate content was estimated by employing the Anthrone method(Yemm and Willis, 1954). Protein content was determined by employing the method suggested by Lowry *et al.* (1951) while nitrogen content was estimated by microkjeldhal's method (Allen, 1931). Heavy metals in the soil and crop plant samples were estimated using Atomic Absorption Spectrophotometer (AAS Model GBC 932 place).

RESULTS AND DISCUSSION

The plant of *Phaseolus* mango(black gram) was treated with waste water (Level -6) effluent showed a root length 12.96 (41.98%), shoot length 38.48cm (26.89%), Root dry weight was 0.200gm (58.76%) and shoot dry weight was 3.481 (21.20%) (Table 1a and 1b) at post flowering stage as compared to control condition. The amount of total chlorophyll was 0.761mg/gm at treatment level six with a reduction of 56.43 percent as compared to controlled conditions at post flowering stage .(Table 1c). while a maximum reduction in carbohydrate 35.1mg/gm (42.19%),phosphorous 3.11 (10.37%) nitrogen 0.861percent (58.24%) and protein 4.519percent (64.94%) content was found at treatment level six as compared to control condition at post flowering stage. (Table 1d and 1e).

The results of heavy metal analyzed in different plant parts samples of *Phaseolus* mango(black gram) at pre-flowering, peak-flowering and post-flowering stages are given in table. The concentration of Zn increased with increase in waste water treatment. At six level treatment the plants accumulated Zn concentration 1.125mg/gm d.wt.,0.547mg/gm and 0.614mg/gm in root ,stem and leaves respectively at pre flowering stage. Cu concentration was 0.565mg/gm ,0.351mg/gm and 1.026 mg/gm ,Ni concentration was 0.185mg/gm,0.303mg/gm and

0.309mg/gm ,Cd was 0.188mg/gm,0.263mg/gm and 0.257 mg/gm, Cr was 0.215mg/gm ,0.191mg/gm and 0.422mg/gm, Pb was 0.409mg/gm, 0.204mg/gm and 0.202 mg/gm , and Co concentration was 0.308g/gm,0.209mg/gm and 0.303mg/gm in root ,stem and leaves respectively at pre-flowering stage. The Zn concentration was increased in peak flowering stage. At six treatment level the plants accumulated Zn concentration was 1.405mg/gm ,0.674mg/gm and 1.259 mg/gm , Cu was 0.736 mg/gm,0.586mg/gm and 1.427 mg/gm, Ni was 0.246mg/gm ,0.408mg/gm and 0.421mg/gm, Cd was 0.226mg/gm,0.323 mg/gm and 0.375mg/gm , Cr concentration was measured 0.319 mg/gm,0.358 mg/gm and 0.631 g/gm ,Pb was 0.476mg/gm, 0.339mg/gm and 0.267 mg/gm, Co was 0.416mg/gm, 0.357mg/gm and 0.462mg/gm in root ,stem and leaves respectively at peak flowering stage.

Similarly the heavy metals concentration was increased at post flowering stage at treatment level six effluent or waste water Zn concentration was 1.608mg/gm ,0.907 mg/gm and 1.865mg/gm , Cu was 0.802mg/gm,0.698mg/gm and 0.836 mg/gm ,Ni was 0.321mg/gm,0.574mg/gm and 0.585 mg/gm, Cd was 0.286mg/gm, 0.529mg/gm and 0.589 mg/gm, Cr concentration was 0.458 mg/gm,0.479 mg/gm and 0.928 mg/gm, Pb was 0.456 mg/gm, 0.469 mg/gm and 0.487 mg/gm, Co was 0.506 mg/gm, 0.519 mg/gm and 0.703mg/gm in root ,stem and leaves respectively at post flowering stage.

The heavy metal concentration in the edible parts was recorded at post flowering stage. Zinc, Copper, Nickel, Cadmium, Chromium, Lead and Cobalt concentration was 5.223mg/gm, 2.496 mg/gm, 1.229 mg/gm, 1.746mg/gm, 4.853 mg/gm, 1.874 mg/gm and 1.802mg/gm respectively.

Earlier studies by Khan and Marwari (2002, 2003) and Khan et al. (2003 a, b) reported high concentration of heavy metal in vegetables grown in agricultural fields receiving textile waste water. Metal accumulation in vegetables may pose a direct threat to human health (Türkdogan *et al.*, 2003)Heavy metals may enter the human body through inhalation of dust, direct ingestion of soil, and consumption of food plants grown in metal-contaminated soil. Crop plants growing on heavy metal contaminated medium can accumulate high concentrations of trace elements to cause serious health risk to consumers. Long *et al.*, (2003) studied the effects of excess zinc on plant growth of three selected vegetables i.e. Chinese cabbage, celery and pakchoi. They found that excess Zn in growth media caused toxicity to all three vegetable crops and showed symptoms like chlorosis in young leaves, browning of coralloid roots, and serious inhibitionon

ISSN: 2320-0294

plant growth. Athar and Ahmad (2002) conducted a study by pot experiment to investigate the toxic effects of certain heavy metals on the plant growth and grain yield of wheat (*Triticum aestivum L.*). Present study was also conducted through a laboratory pot experiment to ascertain the bioaccumulation of heavy metals. Higher the amount of textile wastewater addition more was the bioaccumulation. The results revealed that heavy metals brought about significant reductions in both parameters, Cd being the most toxic metal followed by Cu,Ni, Zn, Pb, Cr and Co. There is also a reduction in plant protein and nitrogen content was recorded with the increasing concentration of heavy metals. Metal uptake by grains was directly related to the applied heavy metal with greater concentrations of metals found in cases where metals were added separately rather than in combinations.

The prolonged consumption of unsafe concentrations of heavy metals through foodstuffs may lead to the chronic accumulation of heavy metals in the kidney and liver of humans causing disruption of numerous biochemical processes, leading to cardiovascular, nervous, kidney and bone diseases (WHO, 1992; Jarup, 2003). Some heavy metals such as Cu, Zn, Mn, Co and Mo act as micronutrients for the growth of animals and human beings when present in trace quantities, whereas others such as Cd, As, and Cr act as carcinogens (Feig et al., 1994; Trichopoulos, 1997). The contamination of vegetables with heavy metals due to soil and atmospheric contamination poses a threat to its quality and safety. Dietary intake of heavy metals also poses risk to animals and human health. Heavy metals such as Cd and Pb have been shown to have carcinogenic effects (Trichopoulos, 1997). High concentrations of heavy metals (Cu, Cd and Pb) in fruits and vegetables were related to high prevalence of upper gastrointestinal cancer (Turkdogan et al., 2002).

The authors conclude that higher the proportion of waste water more is the concentration of heavy metals in the plant parts including the edible part. The experiment suggest that untreated waste water should be discouraged to be used in agricultural fields in order to keep the edible part safe from heavy metals.

ACKNOWLEDGEMENT

The authors are thankful to the Director, Indira Gandhi Centre for Human Ecology, Environment and Population Studies and Dean Faculty of Science, University of Rajasthan for providing

necessary facilities. One of the authors (Jaishree) is thankful to University Grant Commission New Delhi for providing financial assistance as Rajiv Gandhi Senior Research Fellowship.

Table 1a: Effects of Textile Waste Water on Root and Shoot Lengths (cm) of Phaseolus mungo.var T-9 (black gram) through pot experiment.

Treatment Levels	Pre-Flowe	ring Stage	Peak-Flow	ering Stage	Post-Flowe	ering Stage
(DW:WW)	Root Length	Shoot Length	Root Length	Shoot Length	Root Length	Shoot Length
(DW:WW)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)
Control (D.W)	15.72 ± 0.84	42.74±0.79	21.7± 0.90	49.46± 1.03	22.34±0.98	52.64±0.80
Level 1 (90:10)	14.76±0.74	41.28±0.87	18.6±0.90	46.46±1.10	19.7±0.902	50.04±1.158
Level 1 (90:10)	(6.106)	(3.416)	(14.28)	(6.06)	(11.81)	(4.93)
L1 2 (90-20)	13.74±0.743	37.52±0.87	17.12±0.872	44.6±0.79	18.14±0.983	47.18±0.917
Level 2 (80:20)	(12.59)	(12.213)	(21.05)	(9.826)	(18.800)	(10.372)
Level 2 (70,20)	12.1±0.886	35.12±0.952	15.12±0.87	41.66±0.918	16.52±1.044	43.66±0.918
Level 3 (70:30)	(23.02)	(17.82)	(30.32)	(15.77)	(26.05)	(17.059)
Level 4 (60.40)	10.3±0.886	31.02±1.035	13.68±0.822	40.12±1.107	14.66±0.823	41.8±0.891
Level 4 (60:40)	(34.47)	(27.42)	(36.95)	(18.88)	(34.37)	(20.592)
Loyal 5 (50.50)	8.78±0.589	28.54±0.92	11.42±0.92	36.34±0.887	12.96±0.702	38.48±0.936
Level 5 (50:50)	(44.14)	(33.22)	(47.37)	(26.52)	(41.987)	(26.899)

Table 1b: Effects of Textile Waste Water on Root and Shoot Weight (gm) of Phaseolus mungo.var T-9 (black gram) through pot experiment.

Treatment Levels	Pre-Flowe	ring Stage	Peak-Flow	ering Stage	Post-Flow	ering Stage
(DW:WW)	Root Weight	Shoot Weight	Root Weight	Shoot Weight	Root Weight	Shoot Weight
(D 11.1111)	(gm)	(gm)	(gm)	(gm)	(gm)	(gm)
Control (D.W)	0.367 ±0.011	2.312±0.008	0.438±0.009	4.106±0.016	0.485±0.009	4.418 ±0.012
Level 1 (90:10)	0.320 ±2.208	2.208 ±0.026	0.407 ±0.011	3.861 ±0.012	0.429 ±0.01	4.233 ±0.037
Level 1 (90.10)	(12.80)	(4.49)	(7.07)	(5.96)	(11.54)	(4.18)
Level 2 (80:20)	0.233 ±0.015	1.967 ±0.012	0.338 ±0.011	3.561 ±0.014	0.360 ±0.011	4.152 ±0.015
Level 2 (80.20)	(36.51)	(14.92)	(22.83)	(13.27)	(25.77)	(6.02)
Level 3 (70:30)	0.196 ±0.012	1.653 ±0.017	0.307 ±0.011	3.322 ±0.013	0.320 ±0.009	4.063 ±0.017
Level 3 (70.30)	(46.59)	(28.50)	(29.90)	(19.09)	(34.02)	(8.03)
Level 4 (60:40)	0.155 ±0.014	1.319 ±0.019	0.230 ±0.19	3.016 ±0.137	0.241 ±0.011	3.810 ±0.017
Level 4 (00:40)	(57.76)	(42.94)	(47.48)	(26.54)	(50.30)	(13.76)
Level 5 (50:50)	0.128 ±0.012	1.194 ±0.019	0.182 ±0.021	2.240 ±0.025	0.200 ±0.012	3.481 ±0.048
Level 3 (30:30)	(65.12)	(48.35)	(58.44)	(45.44)	(58.76)	(21.20)

Table 1c: Effects of Textile Waste Water on Chlorophyll (mg/gm) in Phaseolus mungo.var T-9 (black gram) through pot experiment.

	Pre-	Flowering S	tage	Peak	k-Flowering S	tage	Pos	t-Flowering Stage	
Treatment Levels			Total Chl			Total Chl			Total Chl
(DW:WW)	Chl-a	Chl-b	(a+b)	Chl-a	Chl-b	(a+b)	Chl-a	Chl-b	(a+b)
	(mg/gm)	(mg/gm)	(mg/gm)	(mg/gm)	(mg/gm)	(mg/gm)	(mg/gm)	(mg/gm)	(mg/gm)
Control (D.W)	0.774±0.507	0.453±0.15	1.227±0.456	1.178±1.101	0.677±0.131	1.855±0.13	1.157±1.54	0.613±0.166	1.747±0.354
Level 1 (90:10)	0.689±0.35	0.382±0.23	1.071±0.39	0.903±.0.725	0.511±0.183	1.415±0.718	0.894±0.299	0.487±0.163	1.382±0.462
Level 1 (90.10)	(10.98)	(15.67)	(12.71)	(23.34)	(24.51)	(23.71)	(22.73)	(20.55)	(20.89)
Level 2 (80:20)	0.579±0.58	0.327±0.15	0.906±0.62	0.810±0.628	0.420±1.397	1.256±0.649	0.782±0.253	0.426±0.139	1.21±0.408
Level 2 (80:20)	(25.19)	(27.81)	(26.16)	(31.23)	(37.96)	(32.10)	(32.41)	(30.50)	(30.73)
Level 3 (70:30)	0.504±0.39	0.280±0.11	0.784±0.43	0.692±0.459	0.384±0.208	1.071±0.355	0.670±0.37	0.365±0.201	0.962±0.571
Level 3 (70:30)	(34.88)	(38.18)	(36.10)	(41.25)	(43.27)	(42.26)	(42.09)	(40.45)	(44.93)
Level 4 (60:40)	0.452±0.334	0.257±0.13	0.714±0.485	0.596±0.484	0.343±0.203	0.940±0.502	0.585±0.326	0.319±0.178	0.904±0.504
Level 4 (00:40)	(41.60)	(43.26)	(41.80)	(49.40)	(49.33)	(49.32)	(49.43)	(47.96)	(48.25)
L aval 5 (50.50)	0.400±0.30	0.218±0.16	0.617±0.47	0.501±0.217	0.298±0.126	0.799±0.338	0.494±0.414	0. 267±0.171	0.761±0.571
Level 5 (50:50)	(48.32)	(51.87)	(49.71)	(57.47)	(55.98)	(56.92)	(57.30)	(56.44)	(56.43)

Table 1d: Effects of Textile Waste Water on Carbohydrate and Phosphorous (mg/gm) in Phaseolus mungo var T9 (Black gram) through pot experiment.

Treatment Levels	Pre-Flowe	ring Stage	Peak-Flow	ering Stage	Post-Flower	ering Stage
(DW:WW)	Carbohydrate	Phosphorous	Carbohydrate	Phosphorous	Carbohydrate	Phosphorous
(DW:WW)	(mg/gm)	(mg/gm)	(mg/gm)	(mg/gm)	(mg/gm)	(mg/g <mark>m)</mark>
Control (D.W)	39.58±0.822	3.282±0.09	58.8±1.01	3.346±0.18	60.72±0.871	3.476±0.09
Level 1 (90:10)	35.56±0.76	3.23±0.09	54.58±0.822	3.31±0.07	55.34±1.578	3.404±0.08
Level 1 (50.10)	(10.15)	(1.52)	(7.17)	(0.89)	(8.86)	(1.90)
Level 2 (80:20)	31.2±0.839	3.18±0.088	49.4±0.935	3.24±0.99	50.64±0.838	3.308±0.09
Level 2 (60.20)	(21.17)	(3.04)	(15.9)	(2.99)	(16.60)	(4.66)
Level 3 (70:30)	27.36±0.698	3.14±0.107	44.46±0.95	3.19±0.215	45.62±0.87	3.24±0.177
Level 3 (70.30)	(30.87)	(4.26)	(24.38)	(4.49)	(24.86)	(6.62)
Level 4 (60:40)	24.1±0.935	3.058±0.112	40.0±1.106	3.136±0.151	41.1±0.967	3.19±0.12
Level 4 (00.40)	(39.11)	(7.01)	(31.97)	(6.28)	(32.31)	(8.06)
Level 5 (50:50)	20.28±0.87	2.876±0.221	34.16±0.92	3.066±0.10	35.1±0.79	3.11±0.17
Level 3 (30.30)	(48.96)	(12.5)	(41.90)	(8.20)	(42.19)	(10.37)

Table 1e: Effects of Textile Waste Water on Nitrogen and Protein Phaseolus mungo. var T-9 (black gram) through pot experiment.

Treatment Levels	Pre-Flowering Stage		Peak-Flow	ering Stage	Post-Flowering Stage		
(DW:WW)	% Nitrogen	% Protein	% Nitrogen % Protein		% Nitrogen	% Protein	
Control (D.W)	1.013±0.032	6.342±0.208	1.163±0.079	7.27±0.205	2.062±0.051	12.899±0.330	

T 11 (00:10)	0.905±0.039	5.434±0.276	1.056±0.036	6.602±0.231	1.895±0.059	11.857±0.356
Level 1 (90:10)	(10.66)	(14.31)	(9.20)	(9.18)	(8.09)	(8.06)
Lovel 2 (80.20)	0.709±0.025	4.434±0.218	0.871±0.030	5.448±0.245	1.658±0.056	10.373±0.348
Level 2 (80:20)	(30.00)	(30.08)	(25.10)	(25.06)	(19.59)	(19.52)
L1 2 (70.20)	0.604±0.034	3.781±0.220	0.715±0.042	4.472±0.219	1.359±0.054	8.497±0.330
Level 3 (70:30)	(40.37)	(40.38)	(38.36)	(38.48)	(34.09)	(34.08)
I amal 4 (60,40)	0.467±0.034	2.924±0.214	0.566±0.038	3.544±0.229	1.051±0.058	6.584±0.302
Level 4 (60:40)	(53.89)	(53.89)	(51.33)	(51.25)	(48.98)	(48.95)
Lovel 5 (50.50)	0.407±0.031	2.549±0.201	0.490±0.035	3.070±0.222	0.861±0.051	4.519±0.291
Level 5 (50:50)	(59.82)	(59.80)	(57.86)	(57.77)	(58.24)	(64.94)

Table 1f: Heavy metal analysis in Phaseolus mungo. var T-9 (black gram) through pot experiment at Pre-Flowering Stage.

Heavy Metals	Dlant Danta		Т	reatment Lev	vels (DW:WV	V)	
(mg/g)	Plant Parts	100:00	90:10	80:20	70:30	60:40	50:50
	Root	0.000	0.744	0.866	0.945	1.068	1.125
Zn	Stem	0.000	0.242	0.269	0.393	0.494	0.547
	Leaves	0.000	0.279	0.348	0.455	0.564	0.614
100	Root	0.000	0.363	0.426	0.474	0.516	0.565
Cu	Stem	0.000	0.118	0.156	0.226	0.304	0.351
	Leaves	0.000	0.346	0.438	0.562	0.737	1.026
	Root	0.000	0.102	0.119	0.146	0.165	0.185
Ni	Stem	0.000	0.102	0.137	0.215	0.264	0.303
	Leaves	0.000	0.082	0.138	0.186	0.243	0.309
	Root	0.000	0.061	0.103	0.126	0.149	0.188
Cd	Stem	0.000	0.059	0.107	0.166	0.205	0.263
	Leaves	0.000	0.086	0.136	0.168	0.204	0.257
	Root	0.000	0.112	0.139	0.156	0.178	0.215
Cr	Stem	0.000	0.000	0.063	0.127	0.159	0.191
	Leaves	0.000	0.045	0.129	0.232	0.305	0.422
	Root	0.000	0.00	0.126	0.229	0.351	0.409
Pb	Stem	0.000	0.026	0.095	0.138	0.169	0.204
	Leaves	0.000	0.000	0.053	0.128	0.157	0.202
	Root	0.000	0.082	0.164	0.207	0.259	0.308
Co	Stem	0.000	0.000	0.052	0.121	0.176	0.209
	Leaves	0.000	0.096	0.156	0.204	0.257	0.303

Table 1g: Heavy metal analysis in Phaseolus mungo. var T-9 (black gram) through pot experiment at Peak-Flowering Stage.

Heavy Metals	Plant Parts		Treatment Levels (DW:WW)					
(mg/g)	Plant Parts	100:00	90:10	80:20	70:30	60:40	50:50	
	Root	0.00	1.036	1.127	1.232	1.319	1.405	
Zn	Stem	0.00	0.409	0.486	0.559	0.606	0.674	
	Leaves	0.00	0.609	0.746	0.867	0.963	1.259	
	Root	0.00	0.569	0.628	0.667	0.689	0.736	
Cu	Stem	0.00	0.225	0.293	0.365	0.429	0.586	
	Leaves	0.00	0.634	0.789	1.063	1.253	1.427	
	Root	0.00	0.123	0.165	0.189	0.204	0.246	
Ni	Stem	0.00	0.110	0.204	0.298	0.353	0.408	
	Leaves	0.00	0.136	0.202	0.274	0.358	0.421	
	Root	0.00	0.102	0.138	0.164	0.185	0.226	
Cd	Stem	0.00	0.128	0.165	0.223	0.283	0.323	
100	Leaves	0.00	0.142	0.203	0.254	0.318	0.375	
- X	Root	0.00	0.182	0.212	0.248	0.278	0.319	
Cr	Stem	0.00	0.103	0.185	0.228	0.292	0.358	
No.	Leaves	0.00	0.154	0.252	0.328	0.439	0.631	
	Root	0.00	0.085	0.164	0.258	0.406	0.476	
Pb	Stem	0.00	0.118	0.149	0.251	0.281	0.339	
	Leaves	0.00	0.047	0.119	0.154	0.204	0.267	
- 1	Root	0.00	0.124	0.203	0.289	0.373	0.416	
Co	Stem	0.00	0.132	0.167	0.235	0.296	0.357	
	Leaves	0.00	0.216	0.284	0.343	0.385	0.462	

Table 9h: Heavy metal analysis in Phaseolus mungo.var T-9 (black gram) through pot experiment at Post-Flowering Stage.

Heavy Metals	Plant parts	Treatment Levels (DW:WW)					
(mg/g)	Tiant parts	100:00	90:10	80:20	70:30	60:40	50:50
	Root	0.00	1.236	1.324	1.464	1.525	1.608
Zn	Stem	0.00	0.542	0.642	0.756	0.815	0.907
2.11	Leaves	0.00	0.878	1.127	1.342	1.586	1.865
	Fruit	0.082	2.145	2.632	3.274	4.186	5.223
Cu	Root	0.00	0.541	0.601	0.652	0.709	0.802
Cu	Stem	0.00	0.314	0.372	0.438	0.513	0.698

	Leaves	0.00	0.426	0.536	0.623	0.759	0.836
	Fruit	0.067	0.624	0.746	0.951	1.821	2.496
	Root	0.00	0.182	0.208	0.251	0.298	0.321
Ni	Stem	0.00	0.212	0.303	0.374	0.446	0.574
141	Leaves	0.00	0.236	0.329	0.397	0.482	0.585
	Fruit	0.046	0.362	0.662	0.783	0.944	1.229
	Root	0.00	0.143	0.175	0.208	0.236	0.286
Cd	Stem	0.00	0.212	0.256	0.347	0.425	0.529
Cu	Leaves	0.00	0.249	0.301	0.376	0.476	0.589
	Fruit	0.062	0.523	0.798	1.008	1.423	1.746
	Root	0.00	0.146	0.216	0.329	0.396	0.458
Cr	Stem	0.00	0.169	0.229	0.321	0.412	0.479
CI	Leaves	0.00	0.237	0.356	0.528	0.761	0.928
	Fruit	0.051	0.786	1.057	1.723	3.029	4.853
100	Root	0.00	0.181	0.229	0.302	0.379	0.456
Pb	Stem	0.00	0.189	0.246	0.319	0.386	0.469
10	Leaves	0.00	0.196	0.263	0.337	0.401	0.487
7100	Fruit	0.036	0.386	0.651	1.253	1.501	1.874
	Root	0.00	0.158	0.285	0.374	0.415	0.506
Co	Stem	0.00	0.221	0.302	0.376	0.439	0.519
Co	Leaves	0.00	0.331	0.435	0.508	0.596	0.703
	Fruit	0.041	0.623	0.873	1.142	1.518	1.802

References

Ali, Mohamed. H.H. and Al-Qahtani., K.M. 2012. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. *Egyptian Journal of Aquatic Research*. 38, 31–37.

Allen, W. F.(1931). Accurate and adaptable microkjeldhal methods of nitrogendetermination. *Ind. Eng. Chem. Anal.* 3:239-240.

Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts poly phenyloxidase in *Beta vulgaris*. *Plant physiology*.24(1):1-15.

Awashthi, S.K. 2000. Prevention of food adultration Act no. 37 of 1954. Centre and State rules as amended for 1999, 3rd edn, Ashoka Law House, New Delhi.

E.W.Yemm and A.J.Willis. 1954. The estimation of carbohydrates in plant extracts by anthrone. *Biochem. J.* 57(3):508-514.

Feig, D.I., Reid, T.M., Loeb, L.A., 1994. Reactive oxygen species in tumorigenesis. Cancer Research 54 (Suppl.), 1890–1894.

Jarup, L., 2003. Hazards of heavy metal contamination. British Medical Bulletin 68, 167–182.

Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z., Zhu, Y.G., 2008. Health risk of heavy metals in contaminated soils and food crops irrigated with waste water in Beijing, China. Environmental Pollution 152 (3), 686–692.

Lowry, O.H., N.J. Rasebrogh, A.L. Farr and R.J. Ran dall(1951). Protein measurment with folin-phenol reagent. *J. Biol. Chem.*193: 265-275.

Maleki, A., Zarasvand, M.A., 2008. Heavy metals in selected edible vegetables and estimation of their daily intake in Sanandaj, Iran. The Southeast Asian Journal of Tropical Medicine and Public Health 39 (2), 335–340.

Marshall, 2004. Enhancing food chain integrity: quality assurance mechanism for air pollution impacts on fruits and vegetables systems. Crop Post Harvest Program, Final Technical Report (R7530). http://www.sussex.ac.uk/spru/1-4-7-1-11-1.html.

Radwan, M.A., Salama, A.K., 2006. Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food and Chemical Toxicology 44, 1273–1278.

Sharma, R.K., Agrawal, M., Marshall, F.M., 2008a. Heavy metals (Cu, Cd, Zn and Pb) contamination of vegetables in Urban India: a case Study in Varanasi. Environmental Pollution 154, 254–263.

Sharma, R.K., Agrawal, M., Marshall, F.M., 2008b. Atmospheric depositions of heavy metals (Cd, Pb, Zn, and Cu) in Varanasi city, India. Environmental Monitoring and Assessment 142 (1–3), 269–278.

Trichopoulos, D., 1997. Epidemiology of cancer. In: DeVita, V.T. (Ed.), Cancer, Principles and Practice of Oncology. Lippincott Company, Philadelphia, pp. 231–258.

Turkdogan, M.K., Kilicel, F., Kara, K., Tuncer, I., 2002. Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. *Environmental Toxicology and Pharmacology* 13, 175–179.

WHO (World Health Organization), 1992. Cadmium. Environmental Health Criteria, vol. 134, Geneva.

Wong, C.S.C., Li, X.D., Zhang, G., Qi, S.H., Peng, X.Z., 2003. Atmospheric depositions of heavy metals in the Pearl River Delta, China. Atmospheric Environment 37, 767–776.

Safe limit of irrigation water for heavy metals

Heavy Metal	Concentration (mg/L)
Pb	0.5
Си	0.2
Cr	0.1
Zn	5
Ni	0.2
Со	0.6
Cd	0.01

Source: Pescod, M.B. (1992)

Safe limit of heavy metals for human consumption in food stuff

Heavy Metal	Concentration (mg/L)
Pb	0.0025
Си	0.03
Cr	0.02
Zn	0.05
Ni	0.07
Со	0.04
Cd	0.0015

Source: Awashthi, S. K. (2000).